skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Papoulis, Spiridon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cock, M. (Ed.)
  2. Moran, Mary Ann (Ed.)
    ABSTRACT The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria . We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel “memory” model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus “remembers” the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems. IMPORTANCE Harmful algal blooms (HABs), caused by cyanobacteria like Microcystis aeruginosa , are a global threat to water quality and use across the planet. Researchers have agreed that nutrient loading is a major contributor to HAB persistence. While we may understand the environmental conditions that cause HABs, we still struggle in identifying the mechanisms that explain why these organisms have a competitive edge against other, less ecologically hazardous organisms. Our interdisciplinary approach in microbiology, mathematical population modeling, and genomics allows us to use nearly 70 years of research in restriction modification systems to show that HAB-forming cyanobacteria are exceptional in their ability to defend against viruses, and this capacity is intimately tied to nutrient loading. Our hypothesis suggests that defense against viral predation is a fundamental pillar of cyanobacterial ecological strategy and an important contributor to HAB dynamics. 
    more » « less
  3. null (Ed.)
    Although our understanding of the microbial diversity found within a given system expands as amplicon sequencing improves, technical aspects still drastically affect which members can be detected. Compared with prokaryotic members, the eukaryotic microorganisms associated with a host are understudied due to their underrepresentation in ribosomal databases, lower abundance compared with bacterial sequences, and higher ribosomal gene identity to their eukaryotic host. Peptide nucleic acid (PNA) blockers are often designed to reduce amplification of host DNA. Here we present a tool for PNA design called the Microbiome Amplification Preference Tool (MAPT). We examine the effectiveness of a PNA designed to block genomic Medicago sativa DNA (gPNA) compared with unrelated surrounding plants from the same location. We applied mitochondrial PNA and plastid PNA to block the majority of DNA from plant mitochondria and plastid 16S ribosomal RNA genes, as well as the novel gPNA. Until now, amplifying both eukaryotic and prokaryotic reads using 515F-Y and 926R has not been applied to a host. We investigate the efficacy of this gPNA using three approaches: (i) in silico prediction of blocking potential in MAPT, (ii) amplicon sequencing with and without the addition of PNAs, and (iii) comparison with cultured fungal representatives. When gPNA is added during amplicon library preparation, the diversity of unique eukaryotic amplicon sequence variants present in M. sativa increases. We provide a layered examination of the costs and benefits of using PNAs during sequencing. The application of MAPT enables scientists to design PNAs specifically to enable capturing greater diversity in their system. 
    more » « less
  4. Summary To understand factors that influence the assembly of microbial communities, we inoculatedMedicago sativawith a series of nested bacterial synthetic communities and grew plants in distinct nitrogen concentrations. Two isolates in our eight‐member synthetic community,Williamsiasp. R60 andPantoeasp. R4, consistently dominate community structure across nitrogen regimes. WhilePantoeasp. R4 consistently colonizes plants to a higher degree compared to the other six organisms across each community and each nutrient level,Williamsiasp. R60 exhibits nutrient specific colonization differences.Williamsiasp. R60 is more abundant in plants grown at higher nitrogen concentrations, but exhibits the opposite trend when no plant is present, indicating plant‐driven influence over colonization. Our research discovered unique, repeatable colonization phenotypes for individual microbes during plant microbiome assembly, and identified alterations caused by the host plant, microbes, and available nutrients. 
    more » « less